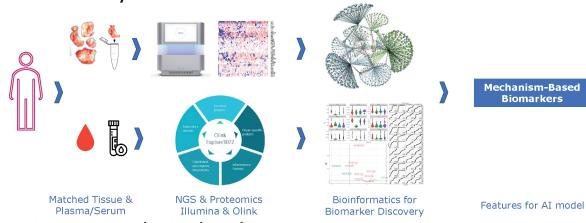

Next generation protein biomarker signature in blood for early detection of colorectal cancer

Christos Fotis^{1,2}, Nikolaos Meimetis³, Nikolaos Tsolakos¹, Athanasios Stamogiannos¹, Vaia Pliaka¹, Ioannis Temponeras¹, Eleni Koukoulioti⁴,

Elli Karatza⁴, Pinelopi Antonopoulou⁴, Krystalina Kapantai⁴, Georgia Anagnostou⁴, Douglas A. Lauffenburger³, Ioannis S. Papanikolaou⁴, Leonidas Alexopoulos^{1,2}

1)Protavio Ltd, Demokritos Science Park, Athens, Greece

- 2)Biomedical Systems Laboratory, National Technical University of Athens, Athens, Greece
- 3) Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA,

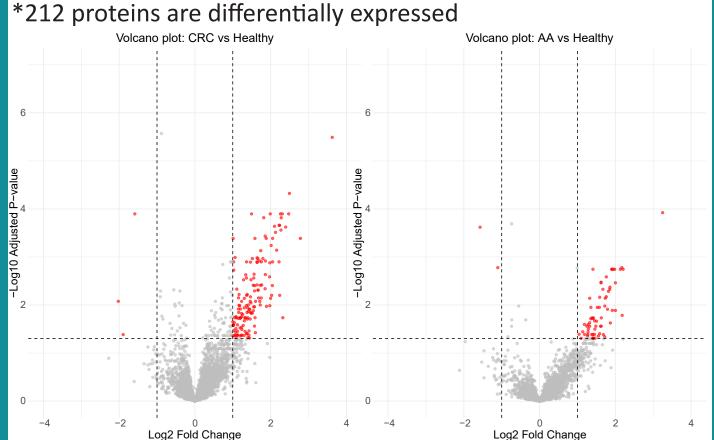


Abstract

<u>Importance:</u> Colorectal cancer is the second leading cause of cancer-related deaths in Europe and the United States.

<u>Aim:</u> Discover novel blood-based diagnostic protein biomarkers that are directly related to the CRC mechanism.

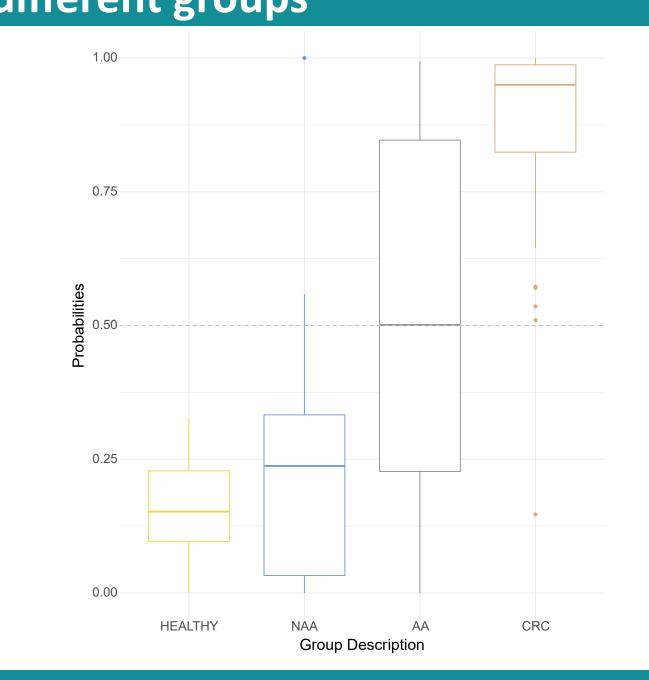
Discovery Clinical Cohort


Group	Participants	Age (median)	Age (IQR)	Sex (%)				
CRC	65	65.0	15.0	Female: 45.4 Male: 54.6				
AA	106	65.0	13.0	Female: 40.9 Male: 59.1				
NAA	50	63.5	10.8	Female: 47.6 Male: 52.4				
11 a a la la c	75	F.C. F.	47.0	Female: 54.1				

CRC = Colorectal cancer patients
 AA = Advanced Adenomas

NAA = Patients with non neoplastic findings
 Healthy = Patients with no findings

Differential expression analysis


Male: 45.9

The final model has high performance across all groups

		Sensitivity (70)	Sensitivity 95% CI	Specificity (%)	Specificity 95% CI
CRC vs Normal	95.9	98.1	90.1-100.0	93.1	77.2-99.2
SI vs Normal	96.9	100.0	71.5-100.0	93.1	77.2-99.2
SII vs Normal	97.6	100.0	75.3-100.0	93.1	77.2-99.2
SI/SII vs Normal	97.3	100.0	85.8-100.0	93.1	77.2-99.2
AA vs Normal	78.0	50.0	37.0-63.0	93.1	77.2-99.2
HGD vs Normal	74.7	43.5	23.2-65.5	93.1	77.2-99.2
CIS vs Normal	66.4	50.0	6.8-93.2	93.1	77.2-99.2
AA10 vs Normal	85.8	61.1	35.7-82.7	93.1	77.2-99.2
V vs Normal	74.1	50.0	21.1-78.9	93.1	77.2-99.2

Predicted probabilities separate different groups

Analysis Pipeline

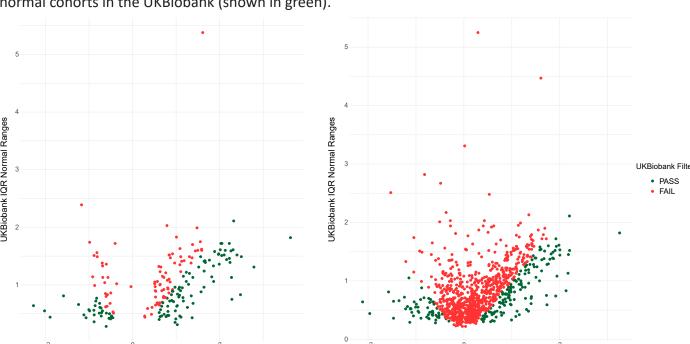
Initial Exploratory Analysis

e.g. Clustering, Covariate Analysis Blood proteomics data of 296 participants

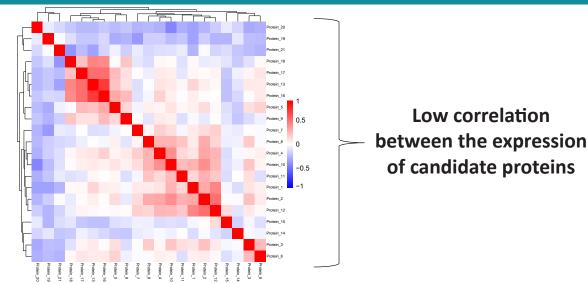
Biomarkers Discovery

- 1. Differential protein analysis
- 2. Important proteins in Machine Lerning modeling (e.g. Elastic Net)
- 3. ROC analysis of signle proteins

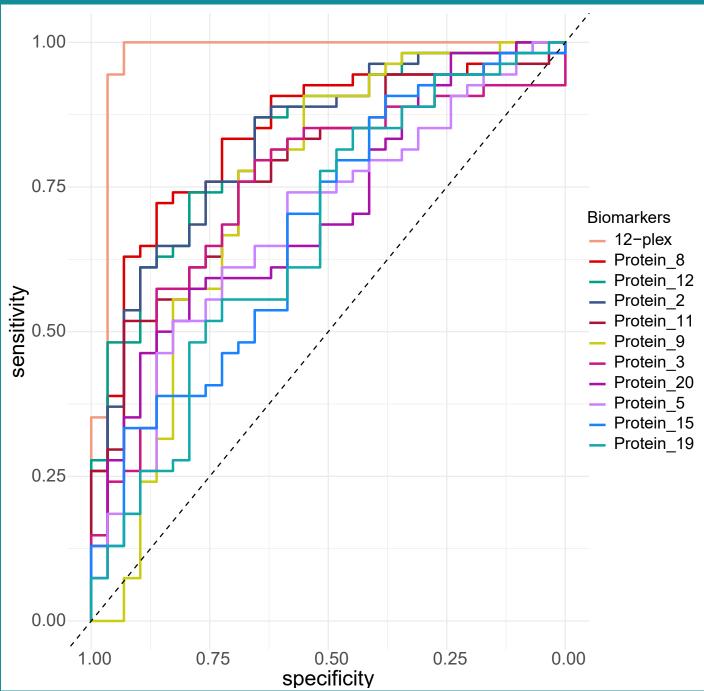
Biomarkers Prioritization


- 1. Limit of Detection Filtering
- 2. Filtering using Normal range in UKBiobank
- 3. Significant trend in clinical groups

Biomarkers Evaluation


- 1. Optimal combination of biomarkers
- 2. Final evaluation of panel of protein biomarkers

Biomarker prioritization criteria


One prioritization criterion is based on the comparison of biological effect size with the Normal ranges from the UK Biobank. We applied this criterion in order to ensure that the final multiplex assay can potentially achieve greater specificity. We select for proteins with a log(FC) greater than the interquartile range in normal cohorts in the UKBiobank (shown in green).

Candidates capture unique information

Performance of 12-plex assay and single biomarkers for CRC detection

Funding & Aknowledgements

Partners from the Biobank of MU Graz and Agios Savvas cancer hospital contributed to the discovery clinical cohort.

Project funded by

Schweizerische Eidigenossenschaft
Confederation suisse
Confederazione Svizzera
Confederazione Svizzera
Swiss Confederation
Federal Department of Economic Aff
Education and Research EAER
State Secretariat for Education,
Research and Innovation SERI

